

ADDITIONAL MATHEMATICS

4037/22 May/June 2017

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

This document consists of 14 printed pages.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dep dependent follow through after error FT ignore subsequent working isw not from wrong working nfww or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Question	Answer	Marks	Partial Marks
1	5x + 3 = 3x - 1 oe or $5x + 3 = 1 - 3x$ oe	M1	
	x = -2 and $x = -0.25$ only mark final answer	A2	nfww A1 for $x = -2$ ignoring extras implies M1 if no extras seen
			If M0 then SC1 for any correct value with at most one extra value
	Alternative method		
	$(5x+3)^2 = (1-3x)^2$ oe soi	M1	
	$16x^2 + 36x + 8 = 0$ oe	A1	
	x = -0.25, $x = -2$ only; mark final answer	A1	
2	Without using a calculator Sufficient evidence must be seen to be convinced that a calculator has not been used. Withhold the mark for any step that is unsupported.		
	deals with the negative index soi	B1	e.g. $\left(\frac{3-\sqrt{5}}{1+\sqrt{5}}\right)^2$
	rationalises $\frac{3-\sqrt{5}}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}}$ oe	M1	allow for $\frac{1+\sqrt{5}}{3-\sqrt{5}} \times \frac{3+\sqrt{5}}{3+\sqrt{5}}$
	multiplies out correctly $\frac{3-4\sqrt{5}+5}{1-5}$ oe	A1	allow for $\frac{3+4\sqrt{5}+5}{9-5}$
	squares correct binomial $(-2 + \sqrt{5})^2 = (4 - 4\sqrt{5} + 5)$ oe	A1	allow for $(2+\sqrt{5})^2 = (4+4\sqrt{5}+5)$
	$9-4\sqrt{5}$ cao	A1	dep on all previous marks awarded

Question	Answer	Marks	Partial Marks
2	Alternative method 1:		
	dealing with the negative index soi	B1	
	correctly squaring with at least 3 terms in the numerator and denominator $\frac{3-\sqrt{5}}{1+\sqrt{5}} \times \frac{3-\sqrt{5}}{1+\sqrt{5}} = \frac{9-6\sqrt{5}+5}{1+2\sqrt{5}+5}$ oe	B1	
	rationalising their $\left(\frac{14-6\sqrt{5}}{6+2\sqrt{5}} \times \frac{6-2\sqrt{5}}{6-2\sqrt{5}}\right)$ oe	M1	
	multiplying out correctly; at least 3 terms in the numerator but condone a single value for the denominator $\frac{84-64\sqrt{5}+60}{36-20}$ oe	A1	
	$9 - 4\sqrt{5}$ cao	A1	
	Alternative method 2		
	dealing with the negative index soi	B1	
	$9 - 6\sqrt{5} + 5 = (a + b\sqrt{5})(1 + 2\sqrt{5} + 5)$	M1	
	$ \begin{array}{c} 14 = 6a + 10b \\ -6 = 2a + 6b \end{array} \text{oe} \\ \end{array} $	A1	
	a=9 cao	A1	
	b = -4 cao	A1	
	Alternative method 3		
	for dealing with the negative index soi	B1	
	$[3-\sqrt{5} = (c+d\sqrt{5})(1+\sqrt{5}) \text{ leading to}]$ c+5d=3 c+d=-1	M1	
	c = -2 and $d = 1$	A1	
	$\left(-2 + \sqrt{5}\right)^2 = 4 - 4\sqrt{5} + 5$	A1	
	$9 - 4\sqrt{5}$ cao	A1	

Question	Answer	Marks	Partial Marks
3	Correctly finding a correct linear factor or root	B1	from a valid method, e.g. factor theorem used or long division or synthetic division: $f(2) = 10(2^{3}) - 21(2^{2}) + 4 = 0$ $10x^{2} - x - 2$ or $x - 2\overline{\smash{\big)}10x^{3} - 21x^{2}} + 4$ $10x^{3} - 20x^{2}$ $-x^{2}$ $-x^{2}$ $-2x + 4$ $-2x + 4$ 0 or 2 $10 -21 0 4$ $\downarrow 20 -2 -4$ $10 -1 -2 0$
	correct linear factor stated or implied by, e.g. $(x-2)(10x^2 - x - 2)$	B1	(x-2) or $(2x-1)$ or $(5x+2)do not allow \left(x-\frac{1}{2}\right) or \left(x+\frac{2}{5}\right)$
	Correct quadratic factor $(10x^2 - x - 2)$ or $(5x^2 - 8x - 4)$ or $(2x^2 - 5x + 2)$	B2	found using any valid method; B1 for any 2 terms correct
	(x-2)(2x-1)(5x+2) mark final answer	B1	must be written as a correct product of all 3 linear factors; only award the final B1 if all previous marks have been awarded
			If quadratic factor is not found but correct remaining linear factors are found using e.g. the factor theorem or long division or synthetic division etc. with correct, sufficient, complete working to justify that no calculator has been used allow: B1 for correctly finding a correct linear factor or root
			 B1 for a correct linear factor stated or implied SC3 for the full, complete and correct working to find the remaining two linear factors and arrive at the correct product of 3 linear factors

Question	Answer	Marks	Partial Marks
4	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x - 7$ soi	B1	
	$m_{\rm normal} = -\frac{1}{5}$ soi	B1	finds or uses correct gradient of normal
	$m_{\text{tangent}} = 5 \text{ soi or } (6x-7)\left(-\frac{1}{5}\right) = -1 \text{ oe}$	M1	uses $m_1m_2 = -1$ with numerical gradients
	$6x - 7 = 5$ oe $\Rightarrow x = 2$	A1	
	<i>y</i> = 9	A1	
	<i>k</i> = 47	A1	
	Alternative method		
	$m_{\rm normal} = -\frac{1}{5}$	B1	
	$m_{\rm tangent} = 5$	M1	
	$3x^2 - 12x + 11 - c = 0 \text{oe}$	A1	
	solving $3x^2 - 12x + 12 = 0$ oe to find $x = 2$	A1	
	<i>y</i> = 9	A1	
	<i>k</i> = 47	A1	
5(i)	$(their 2x^4)(0.2 - \ln 5x) + 0.4x^5(their \frac{-5}{5x})$ oe or	M1	clearly applies correct form of product rule
	their $0.4x^4 - \left(\left(their 2x^4 \right) \ln 5x + 0.4x^5 \left(their \frac{5}{5x} \right) \right)$ oe		
	$-2x^4 \ln 5x$ isw	A1	nfww
5(ii)	$3\ln 5x$ or $\ln 5x + \ln 5x + \ln 5x$	B1	

Question	Answer	Marks	Partial Marks
5(iii)	$\frac{3}{-2}\int (-2x^4\ln 5x)dx \text{ oe}$	M1	FT $k = 2$ from (i) allow for $\frac{3}{2} \int (2x^4 \ln 5x) dx$ or, when $k = -2$, for $\int (x^4 \ln 5x) dx = -0.2x^5 (0.2 - \ln 5x)$ or $-\frac{2}{3} \int (3x^4 \ln 5x) dx = 0.4x^5 (0.2 - \ln 5x)$ oe or, when FT $k = 2$, for $\int (x^4 \ln 5x) dx = 0.2x^5 (0.2 - \ln 5x)$ or $\frac{2}{3} \int (3x^4 \ln 5x) dx = 0.4x^5 (0.2 - \ln 5x)$ oe
	$-\frac{3}{2} (0.4x^{5}(0.2 - \ln 5x)) [+c] \text{ oe isw cao}$	A1	nfww; implies M1 An answer of $0.6x^5(0.2 - \ln 5x)$ following k = 2 from (i) implies M1 A0
6	Uses $b^2 - 4ac$	M1	
	$\left(p-q\right)^2 - 4(p)(-q)$	A1	implies M1
	$p^2 + 2pq + q^2$	M1	correctly simplifies
	$(p+q)^2 \ge 0$ oe cao isw	A1	
	Alternative method $(px-q)(x+1) = 0$ or $\frac{-(p-q) \pm \sqrt{(p+q)^2}}{2p}$	M2	or M1 for $(px+q)(x-1)$ [=0] or $\frac{-(p-q) \pm \sqrt{(p-q)^2 - 4(p)(-q)}}{2p}$
	$x = \frac{q}{p}, x = -1$	A1	
	for conclusion, e.g. p and q are real therefore $\frac{q}{p}$ is real [and -1 is real]	A1	
7(a)(i)	7	B1	
7(a)(ii)	$\frac{1}{7}$ or $\frac{1}{their7}$	B1	FT <i>their</i> 7 must not be 1 if following through

Question	Answer	Marks	Partial Marks
7(b)	$y = 81^{-\frac{1}{4}}$ or $y = 3^{-1}$ or $y = 9^{-\frac{1}{2}}$ oe	M1	Anti-logs
	$y = \frac{1}{3}$ only or 0.333[3] only	A1	nfww; implies the M1; $y = \dots$ must be seen at least once
			If M0 then SC1 for e.g. $81^{-\frac{1}{4}} = \frac{1}{3}$ as final
			answer
7(c)	$\frac{2^{5(x^2-1)}}{(2^2)^{x^2}} \text{ or } \frac{4^{\frac{5}{2}(x^2-1)}}{4^{x^2}} \text{ or } \frac{32^{x^2} \times 32^{-1}}{4^{x^2}}$	B1	converts the terms given left hand side to powers of 2 or 4; may have cross- multiplied
	or $\log 32^{x^2-1} - \log 4^{x^2} = \log 16$ oe		or separates the power in the numerator correctly
			or applies a correct log law
	$2^{3x^2-5} = 16 \text{ oe} \Rightarrow 3x^2 - 5 = 4 \text{ oe}$	M1	combines powers and takes logs or equates powers;
	or $4^{\frac{3}{2}x^2 - \frac{5}{2}} = 16 \text{ oe} \Rightarrow \frac{3}{2}x^2 - \frac{5}{2} = 2 \text{ oe}$ or $\frac{8^{x^2}}{32} = 16 \text{ oe} \Rightarrow x^2 \log 8 = \log 512 \text{ oe}$		or brings down all powers for an equation already in logs
	or $(x^2 - 1)\log 32 - x^2\log 4 = \log 16$ oe		condone omission of necessary brackets for M1; condone one slip
	$[x=]\pm\sqrt{3}$ isw cao or ± 1.732050 rot to 3 or more figs. isw	A1	
8(i)	$y-8 = -\frac{8}{12}(x-(-8))$ oe isw	B2	B1 for $m_{AB} = -\frac{8}{12}$ oe
	or $y[-0] = -\frac{8}{12}(x-4)$ oe isw		or M1 for $\frac{8-0}{-8-4}$ oe
	or $3y = -2x + 8$ oe isw		
8(ii)	$(-8-4)^2 + (8[-0])^2$ oe	M1	any valid method
	$\sqrt{208}$ isw or $4\sqrt{13}$ isw or 14.4222051 rot to 3 or more sf	A1	implies M1 provided nfww

Question	Answer	Marks	Partial Marks
8(iii)	[coordinates of $D=$] (-2, 4) soi	B1	If coordinates of <i>D</i> not stated then a calculation for m_{CD} or a relevant length with the coordinates clearly embedded must be shown to imply B1
	Gradient methods:	M1	or Length of sides methods:
	$\begin{bmatrix} m_{CD} = \frac{7 - their4}{0 - their(-2)} = \end{bmatrix} their\left(\frac{3}{2}\right)$		finds or states $AC^2 = 65$ or $AC = \sqrt{65}$ or $AC^2 = (-8-0)^2 + (8-7)^2$ oe or $AC = \sqrt{(-8-0)^2 + (8-7)^2}$ oe and $CD^2 = their 13$ or $CD = their \sqrt{13}$ or $CD^2 = (0 - their (-2))^2 + (7 - their 4)^2$ oe or $CD = \sqrt{(0 - their (-2))^2 + (7 - their 4)^2}$ oe and $AD^2 = their 52$ or $AD = their 2\sqrt{13}$ or $AD^2 = (-8 - their (-2))^2 + (8 - their 4)^2$ or $AD = \sqrt{(-8 - their (-2))^2 + (8 - their 4)^2}$ or uses a valid method with <i>their</i> coordinates of D to find the exact area of the triangle and equates to $\frac{1}{2}(AD)(CD)\sin(ADC)$
	3 (8) 2	A1	2
	states $\frac{3}{2} \times \left(-\frac{8}{12}\right) = -1$ oe or $\frac{3}{2}$ is the negative reciprocal of $-\frac{2}{3}$ oe or finds the equation of the perpendicular bisector of <i>AB</i> as $y = \frac{3}{2}x + 7$ independently of <i>C</i> and states that <i>C</i> lies on this line.		integer values, that $65 = 13 + 52$ or finds e.g. $AC = \sqrt{65}$ using $\sqrt{(2\sqrt{13})^2 + (\sqrt{13})^2}$ or solves $\frac{1}{2}(2\sqrt{13})(\sqrt{13})\sin ADC = 13$ or $(\sqrt{65})^2 = (2\sqrt{13})^2 + (\sqrt{13})^2$ $-2(2\sqrt{13})(\sqrt{13})\cos ADC$ to show ADC is a right angle
8(iv)	$\begin{pmatrix} -4\\ 1 \end{pmatrix}$ or $-4\mathbf{i} + \mathbf{j}$	B1	condone coordinates

Question	Answer	Marks	Partial Marks
8(v)	Full valid method e.g. for showing that e.g. $\overrightarrow{CB} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 7 \end{pmatrix} = \begin{pmatrix} 4 \\ -7 \end{pmatrix}$	B2	B1 for incomplete method e.g. for stating that $\overrightarrow{CB} = \begin{pmatrix} 4 \\ -7 \end{pmatrix}$
	or showing that e.g. $\overrightarrow{AC} = \begin{pmatrix} 0 \\ 7 \end{pmatrix} - \begin{pmatrix} -8 \\ 8 \end{pmatrix} = \begin{pmatrix} 8 \\ -1 \end{pmatrix} \text{ oe}$ $\overrightarrow{AC} = \begin{pmatrix} 4 \\ 7 \end{pmatrix} \begin{pmatrix} -4 \\ 8 \end{pmatrix} = \begin{pmatrix} 8 \\ -1 \end{pmatrix} =$		or $\overrightarrow{AC} = \begin{pmatrix} 8 \\ -1 \end{pmatrix} = \overrightarrow{EB}$
	and $\overrightarrow{EB} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} - \begin{pmatrix} -4 \\ -1 \end{pmatrix} = \begin{pmatrix} 8 \\ -1 \end{pmatrix}$ oe		or just showing that one pair of opposite sides is parallel or has the same length
	or comparing gradients of both pairs of opposite sides and showing they are pairwise the same or comparing the lengths of both pairs of		or just showing that length DC = length DE or just showing that C , D and E are collinear
	opposite sides and showing that they are pairwise the same		A(-8,8) $m_{AC} = -\frac{1}{8} \sqrt{65}$ C(0,7)
	or showing that length AC = length AE or that the length BC = length BE		$\sqrt{65}$ D(-2, 4) $m_{BC} = -\frac{7}{4}$
	or comparing the gradients and lengths of a pair of opposite sides		$m_{AE} = -\frac{7}{4}$ E(-4, 1)
	or showing that <i>D</i> is the midpoint of <i>CE</i> or showing that length DC = length <i>DE</i> and		$\sqrt{65} m_{EB} = -\frac{1}{8} B(4, 0)$
	that C, D and E are collinear		
9(i)	$2(x-1.5)^2 + 0.5$ isw	B3	or B3 for $a = 2$ and $b = 1.5$ and $c = 0.5$ provided not from wrong format isw
			or B2 for $2(x-1.5)^2 + c$ where $c \neq 0.5$ or $a = 2$ and $b = 1.5$
			or SC2 for $2(x-1.5)+0.5$ or
			$2\left(\left(x-1.5\right)^2+\frac{1}{4}\right)$ seen
			or B1 for $(x-1.5)^2$ seen or for $b = 1.5$ or for $c = 0.5$
			or SC1 for 3 correct values seen in incorrect format e.g. $2(x-1.5x)+0.5$ or $2(x^2-1.5)+0.5$

Question	Answer	Marks	Partial Marks
9(ii)		B3	B1 for correct graph for f over correct domain or correct graph for $f - 1$ over correct domain B1 for vertex marked for f or $f - 1$ and intercept marked for f or $f - 1$ B1 for idea of symmetry – either symmetrical by eye, ignoring any scale or line $y = x$ drawn and labelled Maximum of 2 marks if not fully correct
9(iii)	$\frac{x - 0.5}{2} = (y - 1.5)^2$	M1	FT <i>their a,b,c</i> , provided <i>their a</i> \neq 1 and <i>a,b,c</i> are all non-zero constants or $\frac{y-0.5}{2} = (x-1.5)^2$ and reverses variables at some point
	$f^{-1}(x) = 1.5 - \sqrt{\frac{x - 0.5}{2}}$ oe	A1	must have selected negative square root only; condone $y = \dots$ etc.; must be in terms of x
			If M0 then SC2 for $f^{-1}(x) = \frac{6 - \sqrt{8x - 4}}{4}$
			oe
			or SC1 for $f^{-1}(x) = \frac{-(-6) \pm \sqrt{36 - 4(2)(5 - x)}}{2(2)}$ oe
	$x \ge \frac{1}{2}$ oe	B1	
10(i)	$\sin^{-1}\left(\frac{3}{4}\right)$ soi	M1	implied by 0.848[06]
	0.848[06] rot to 3 or more figs or 2.29[35] rot to 3 or more figs	M1	implied by a correct answer of acceptable accuracy
	0.544 486 rot to 3 or more figs isw	A1	
	1.03 or 1.02630 rot to 4 or more figs isw	A1	Maximum 3 marks if extra angles in range; no penalty for extra values outside range $0 \le x \le \frac{\pi}{2}$

Question	Answer	Marks	Partial Marks
10(ii)	Correctly uses $\tan^2 y = \sec^2 y - 1$ and/or $\frac{\sin y}{\cos y}$ and $\sin^2 y = 1 - \cos^2 y$	M1	for using correct relationship(s) to find an equation in terms of a single trigonometric ratio
	$3\sec^{2} y - 14\sec y - 5 = 0$ $\Rightarrow (3\sec y + 1)(\sec y - 5)$ or $5\cos^{2} y + 14\cos y - 3 = 0$ $\Rightarrow (5\cos y - 1)(\cos y + 3)$	DM1	for factorising or solving their 3-term quadratic dependent on the first M1 being awarded
	$\left[\cos y = -3\right] \cos y = \frac{1}{5}$	A1	
	78.5 or 78.4630 rot to 2 or more decimal places isw	A1	
	281.5 or 281.536 rot to 2 or more decimal places isw	A1	Maximum 4 marks if extra angles in range; no penalty for extra values outside range $0 \le x \le 360$
11(i)	$\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} + 5x[+c]$ isw	B2	B1 for any 3 correct terms
11(ii)	$x^{3} + 4x^{2} - 5x + 5 = 5$ and rearrange to $x(x^{2} + 4x - 5) = 0$ oe soi	B1	$A(-5,5) \xrightarrow{y \ b \ c(1,5)} B \xrightarrow{C(1,5)} B \xrightarrow{(-5,0)} O \xrightarrow{D(1,0)} x$
	Solves their $x^2 + 4x - 5 [= 0]$ soi	M1	
	x = -5, x = 1 soi	A1	
	OEAB = 25, OBCD = 5	A1	

Question	Answer	Marks	Partial Marks
11(iii)	Correct or correct FT substitution of 0, <i>their</i> –5 seen in $\left[\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} + 5x\right]_{their-5}^{0}$	M1	dependent on at least B1 in (i)
	Correct or correct FT substitution of <i>their</i> 1, 0 seen in $\left[\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} + 5x\right]_0^{their_1}$	M1	dependent on at least B1 in (i)
	their $\frac{1175}{12}$ - their OEAB + their OBCD - their $\frac{49}{12}$ oe	M1	for the strategy needed to combine the areas; may be in steps; $97.91\dot{6} - 25 + 5 - 4.08\dot{3}$
	$\frac{886}{12}$ oe or $73\frac{5}{6}$ oe or 73.83 rot to 3 or more sig figs	A1	all method steps must be seen; not from wrong working
			If M0 then allow SC3 for $\int_{-5}^{0} (x^3 + 4x^2 - 5x) dx - \int_{0}^{1} (x^3 + 4x^2 - 5x) dx \text{oe}$ $= \left[\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} \right]_{-5}^{0} - \left[\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} \right]_{0}^{1}$
			$\begin{bmatrix} 4 & 3 & 2 \end{bmatrix}_{-5} \begin{bmatrix} 4 & 3 & 2 \end{bmatrix}_{0}$ = $\begin{bmatrix} 0 - \left(\frac{625}{4} - \frac{500}{3} - \frac{125}{2}\right) \end{bmatrix} - \begin{bmatrix} \left(\frac{1}{4} + \frac{4}{3} - \frac{5}{2}\right) - 0 \end{bmatrix}$ = $\frac{443}{6}$ oe
			or SC2 for $\int_{their(-5)}^{0} (x^3 + 4x^2 - 5x) dx - \int_{0}^{their^1} (x^3 + 4x^2 - 5x) dx \text{ oe}$ $= \left[\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} \right]_{their(-5)}^{0} - \left[\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} \right]_{0}^{their^1}$ $= \left[F(0) - F(their(-5)) \right] - \left[F(their^1) - F(0) \right]$
12(i)	$-6(2x+1)^{-2}$ or $\frac{-6}{(2x+1)^2}$ oe isw	B1	Allow $-3(2x+1)^{-2} \times 2 \text{ or } \frac{-3 \times 2}{(2x+1)^2}$ oe
	Denominator or $(2x+1)^2$ is positive [and numerator negative therefore g'(x) is always negative] oe	B1	FT their g'(x) of the form $\frac{-k}{(2x+1)^2}$ oe where $k > 0$; Allow $(2x+1)^{-2}$ is always positive
12(ii)	g > 0	B1	
12(iii)	$\frac{3k}{2x+1}$ + 3 oe isw	B1	

Question	Answer	Marks	Partial Marks
12(iv)	$\frac{3k}{2(0)+1} + 3 = 5$	B1	
	$k = \frac{2}{3}$ isw	B1	implies the first B1
12(v)	$x > -\frac{1}{2}$	B1	